CCES Unicamp

Crystal imperfections in ice Ih

Due to its molecular nature, the fundamental asymmetry of the hydrogen bond, and proton disorder, crystal defects in this condensed form of water reveal a complexity not usually seen in atomic crystalline solids. The discussion is organized in terms of the spatial extent of the defects. We start with zero-dimensional imperfections such as the molecular vacancy and interstitial, Bjerrum, and ionic defects, as well as possible defect complexes that can be formed from them. Subsequently, we turn to the properties of dislocations, which are the one-dimensional disturbances that carry plastic deformation in crystalline solids. Finally, we discuss two-dimensional defects such as stacking faults and grain boundaries and discuss to what extent the latter are similar to other interfaces in ice Ih such as the free surface. We conclude with an outlook at the road ahead, discussing future challenges toward understanding the role of crystal defects in the macroscopic behavior of ice Ih.
Maurice D. Koning. J. Chem. Phys. 153, 110902 (2020);

Related posts

Crea-SP awards PhD student Heitor Nigro Lopes from Center for Computing in Engineering & Sciences (CCES)

cces cces

Transient dynamic analysis of generally anisotropic materials using the boundary element method

cces cces

Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids

WP Twitter Auto Publish Powered By :