CCES Unicamp

Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents.
Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids

Full Article URL:

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents.

Related posts

Multiscale model of the role of grain boundary structures in the dynamic intergranular failure of polycrystal aggregates

cces cces

Enzima que degrada plástico coloca o CCES em destaque mundial

escience

CCES researchers recieve Best Paper Award at SBAC-PAD 2017

cces cces
WP Twitter Auto Publish Powered By : XYZScripts.com