CCES Unicamp

On the mechanical properties of protomene: A theoretical investigation

We report a detailed study through fully atomistic molecular dynamics simulations and DFT calculations on the mechanical properties of protomene. Protomene is a new carbon allotrope composed of a mixture of sp2 and sp3 hybridized states. Our results indicate that protomene presents an anisotropic behavior about tensile deformations. At room temperature, protomene presents an ultimate strength of ∼100 GPa and Young’s modulus of ∼600 GPa, lower than the same for other carbon allotropes. Despite that, protomente presents the highest ultimate strain along the z-direction (∼24.7%). Our results also show that stretching the protomene along the z-direction or heating it can induce a semiconductor-metallic phase transition, due to a high amount of sp3 bonds that are converted to sp2 ones.
EF Oliveira, PAS Autreto, CF Woellner, DS Galvao, Computational Materials Science 161, 190-198, 2019.

Related posts

Multiscale model of the role of grain boundary structures in the dynamic intergranular failure of polycrystal aggregates

cces cces

Nonlinear dynamics of deep water subsea lifting operations considering KC-dependent hydrodynamic coefficients.

cces cces

CCES stories: Josué Labaki

Leandro Martinez