CCES Unicamp

Active Flow Control for Drag Reduction of a Plunging Airfoil under Deep Dynamic Stall

Date: Aug 12, 2019, 14:00

Candidate: Brener d’Lélis Oliveira Ramos

Advisor: William Roberto Wolf

Auditório do DEMM/DEF

Abstract:

High-fidelity simulations are performed to study deep dynamic stall of a SD7003 airfoil in a plunging motion. The numerical computations employ a suit of high-order compact for differentiation, interpolation and filtering on a staggered grid. The SD7003 undergoes a plunge motion at Reynolds number Re = 60,000 and freestream Mach M = 0.1. A mesh convergence study is performed and results show good agreement available data in terms of aerodynamic coefficients. Different shapes of actuators are to simulate suction and blowing at the airfoil leading edge and we observe, for a specific frequency range of actuation, drag is substantially reduced while lift maintained almost unaffected, especially for a 2D actuator. The physical mechanisms responsible for the flow changes in the controlled cases are then discussed.

Related posts

Automatic Ray-Tracer Cloud Offloading in OpenMP

cces cces

Túlio Ricciardi was honored with the CAPES Thesis Prize of 2022

cces cces

Devising Bone Molecular Models at the Nanoscale: From Usual Mineralized Collagen Fibrils to the First Bone Fibers Including Hydroxyapatite in the Extra-Fibrillar Volume

cces cces
WP Twitter Auto Publish Powered By : XYZScripts.com