CCES Unicamp

Active Flow Control for Drag Reduction of a Plunging Airfoil under Deep Dynamic Stall

Date: Aug 12, 2019, 14:00

Candidate: Brener d’Lélis Oliveira Ramos

Advisor: William Roberto Wolf

Auditório do DEMM/DEF

Abstract:

High-fidelity simulations are performed to study deep dynamic stall of a SD7003 airfoil in a plunging motion. The numerical computations employ a suit of high-order compact for differentiation, interpolation and filtering on a staggered grid. The SD7003 undergoes a plunge motion at Reynolds number Re = 60,000 and freestream Mach M = 0.1. A mesh convergence study is performed and results show good agreement available data in terms of aerodynamic coefficients. Different shapes of actuators are to simulate suction and blowing at the airfoil leading edge and we observe, for a specific frequency range of actuation, drag is substantially reduced while lift maintained almost unaffected, especially for a 2D actuator. The physical mechanisms responsible for the flow changes in the controlled cases are then discussed.

Related posts

Claudia Bauzer Medeiros elected for the Brazilian Academy of Sciences

cces cces

Improving Compiler-Generated Transactional Code Performance and Programmability via Language-Level Constructs

cces cces

KernelFaRer: Replacing Native-Code Idioms with High-Performance Library Calls

cces cces
WP Twitter Auto Publish Powered By : XYZScripts.com