CCES Unicamp

2D Analysis of Intergranular Dynamic Crack Propagation in Poly- crystalline Materials a Multiscale Cohesive Zone Model and Dual Reciprocity Boundary Elements

This work analyses the mechanical behaviour and dynamic intergranular fracture of polycrystalline materials, combining the mesoscale to consider the heterogeneities and anisotropy of the elastic material properties and the atomistic scale to include atomic separation effects. The Dual Reciprocity Boundary Element Method is used to evaluate the dynamic displacement field at the mesoscale. the Multiscale Cohesive Zone Model is used to characterize the crack onset and propagation model of atomic interactions using the Lennard–Jones potential and a failure criterion is also introduced in this formulation. Simulations of dynamic intergranular crack propagation are presented to capture material failure at the microscale.

Galvis, A.F., Sollero, P. 2D Analysis of Intergranular Dynamic Crack Propagation in Poly- crystalline Materials a Multiscale Cohesive Zone Model and Dual Reciprocity Boundary Elements. Computers & Structures 164, pp. 1-14, 2016.

Related posts

Automatic Ray-Tracer Cloud Offloading in OpenMP

cces cces

Non-equilibrium free-energy calculation of phase-boundaries using LAMMPS

cces cces

CCES researcher elected for the board of the main computing association in the world

escience
WP Twitter Auto Publish Powered By : XYZScripts.com