CCES Unicamp

Structural and Thermal Stability of Graphyne and Graphdiyne Nanoscroll Structures (invited paper)

DA Solis, D D. Borges, CF Woellner, DS Galvão, ACS applied materials & interfaces v11, 2670 (2019)

Graphynes and graphdiynes are generic names for families of two-dimensional carbon allotropes, where acetylenic groups connect benzenoid-like hexagonal rings, with the coexistence of sp and sp2 hybridized carbon atoms. The main differences between graphynes and graphdiynes are the number of acetylenic groups (one and two for graphynes and graphdiynes, respectively). Similarly to graphene nanoscrolls, graphyne and graphdiynes nanoscrolls are nanosized membranes rolled into papyrus-like structures. In this work we studied through molecular dynamics simulations, using reactive potentials, the structural and thermal (up to 1000 K) stability of α,β,γ-graphyne and α,β,γ-graphdiyne scrolls. Our results demonstrate that stable nanoscrolls can be created for all the structures studied here, although they are less stable than corresponding graphene scrolls. This can be elucidated as a result of the higher graphyne/graphdiyne structural porosity in relation to graphene, and as a consequence, the π–π stacking interactions decrease.

 

Related posts

Loosing plant cell walls: Molecular dynamics simulations of bacterial expansin on the cellulose surface

escience

League of Brazilian Bioinformatics: a competition framework to promote scientific training

cces cces

Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus

cces cces
WP Twitter Auto Publish Powered By : XYZScripts.com