CCES Unicamp

Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents.
Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids

Full Article URL:

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents.

Related posts

Machine learning and comparative genomics approaches for the discovery of xylose transporters in yeast

cces cces

G3(MP2)//B3-SBK: A revision of a composite theory for calculations of thermochemical properties including some non-transition elements beyond the fourth period

cces cces

Analysis of three-dimensional hexagonal and cubic polycrystals using the boundary element method

cces cces