CCES Unicamp

Atomically locked interfaces of metal (Aluminum) and polymer (Polypropylene) using mechanical friction

Joining different parts is one of the crucial components of designing/engineering of materials. Presently, the current energy efficient low weight automotive and aerospace components consist of a different class of materials, such as metals, polymers, ceramics, etc. Joining these components remains a challenge. Here, we demonstrate metal (aluminum) and polymer (Polypropylene, pp) joining using mechanical friction. The detailed characterization clearly demonstrates that atomically locked interfaces are formed in such joining and no chemical bonds are formed during the joining. Also, a waterproof and strong interface is formed in such a process. Fully atomistic molecular dynamics simulations were also carried out in order to further gain insights on the joining process
A Rout, et al., Polymer 169, 148-153, 2019.
https://www.sciencedirect.com/science/article/pii/S0032386119301892

Related posts

TecDay at Unicamp Gathers Researchers and Tech Giants to Discuss the Future of Science with HPC and AI

cces cces

Dangermond Lecture 2017 – Discovering and clearing paths through the world— The pros and cons of graph databases

escience

O eScience na Revista Pesquisa Fapesp

escience