CCES Unicamp

Structural Complementarity of Distance Constraints Obtained from Chemical Crosslinking and Amino Acid Coevolution

The analysis of amino acid coevolution has emerged as a practical method for protein structural modeling by providing structural contact information from alignments of amino acid sequences. In parallel, chemical cross‐linking/mass spectrometry (XLMS) has gained attention as a universally applicable method for obtaining low‐resolution distance constraints to model the quaternary arrangements of proteins, and more recently even protein tertiary structures. Here, we show that the structural information obtained by XLMS and coevolutionary analysis are effectively complementary: the distance constraints obtained by each method are almost exclusively associated with non‐coincident pairs of residues, and modeling results obtained by the combination of both sets are optimal. The structural rationale behind the complementarity of the distance constraints is discussed and illustrated for a representative set of proteins with different sizes and folds.
Ricardo N. dos Santos, Guilherme F. Bottino, Fábio C. Gozzo, Faruck Morcos, Leandro Martínez, Proteins, 2019.

Related posts

On the mechanical properties of novamene: A fully atomistic molecular dynamics and DFT investigation


DNN-ROM: a software to construct reduced order models and fluid flows

cces cces

2D Analysis of Intergranular Dynamic Crack Propagation in Poly- crystalline Materials a Multiscale Cohesive Zone Model and Dual Reciprocity Boundary Elements

cces cces