CCES Unicamp

Non-equilibrium free-energy calculation of phase-boundaries using LAMMPS

We present a guide to compute the phase-boundaries of classical systems using a dynamic Clausius–Clapeyron integration (dCCI) method within the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) code. The advantage of the dCCI method is because it provides coexistence curves spanning a wide range of thermodynamic states using relatively short single non-equilibrium simulations. We describe the state-of-the-art of non-equilibrium free-energy methods that allow us to compute the Gibbs free-energy in a wide interval of pressure and/or temperature. We present the dCCI method in details, discuss its implementation in the LAMMPS package and make available source code, scripts, as well as auxiliary files. As an illustrative example, we determine the phase diagram of silicon in a range of pressures covering from 0 to 15 GPa and temperatures as low as 400 K up to the liquid phase, in order to obtain the phase boundaries and triple point between diamond, liquid and -Sn phases.

Comput. Mater. Sci., 207 (2022), 111275 – https://doi.org/10.1016/j.commatsci.2022.111275

 

Related posts

Uniaxial-deformation behavior of ice I h as described by the TIP4P/Ice and mW water models

cces cces

Mixing the immiscible through high-velocity mechanical impacts: an experimental and theoretical study

cces cces

Data-flow analysis and optimization for data coherence in heterogeneous architectures

cces cces
WP Twitter Auto Publish Powered By : XYZScripts.com