CCES Unicamp

Structural Reinforcement through Liquid Encapsulation

The liquid inside a solid material is one of the most common composite materials in nature. The interface between solid–liquid plays an important role in unique deformation. Here, model systems of two polymers (polydimethylsiloxane–polyvinylidenefluoride) are used to make sphere of solid with liquid inside it.
Structural Reinforcement through Liquid Encapsulation

Full Article URL:

In the current work, we explore load bearing ability of liquid/solid interface by synthesizing liquid filled microspheres. The microspheres consist of two ideal immiscible polymer systems; polydimethylsiloxane (PDMS) filled polyvinylidenefluoride (PVDF) capsules. Hydroxyl terminated PDMS was chosen as the filler due to the huge flexibility of its polymer backbone, whereas PVDF was chosen due to its strong chemical resistivity and high mechanical modulus value. The in situ compression inside a scanning electron microscope (SEM) was used to investigate the deformation mechanisms of the microspheres. In order to gain further insight into these mechanisms, we have also carried out density functional theory (DFT) and fully atomistic molecular dynamics (MD) simulations.

Related posts

Using Hardware-Transactional-Memory Support to Implement Thread-Level Speculation

escience

Elastic and ‘transparent bone’ as an electrochemical separator

cces cces

Mechanical Properties of Protomene: A Molecular Dynamics Investigation

cces cces